LETTERS TO THE EDITOR

Dedicated to the 90th Anniversary of Academician M.G. Voronkov

1-(Pyridine-2-carboxymethyl)silatrane

E. A. Grebneva, O. M. Trofimova, A. I. Albanov, and M. G. Voronkov

Favorskii Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, ul. Favorskogo 1, Irkutsk, 664033 Russia e-mail: omtrof@irioch.irk.ru

Received April 12, 2011

DOI: 10.1134/S1070363212010276

1-(*N*-Heterylalkyl)silatranes Het(CH₂)_nSi(OCH₂CH₂)₃N and their physical and chemical properties have been systematically studied by us since the beginning of the nineteen nineties [1–3]. Generally, they are obtained by the reaction of transetherification of the corresponding (*N*-heterylalkyl)trialkoxysilanes with tris(2-hydroxyethyl)amine [2, 4].

Here, Het stands for a heterocyclic substituent, Y, for the hydrocarbon linker $(CH_2)_n$ (n = 1, 3) or SCH_2

connecting the heterocycle with the silicon atom of the silatranyl group.

So far, *N*-silatranylmethyl derivatives of cyclic aminoacids were unknown. Here we describe the synthesis of the first representative of these compounds, 1-(pyridine-2-carboxymethyl)silatrane.

The precursor of 1-(pyridine-2-carboxymethyl) silatrane, the earlier unknown (pyridine-2-carboxymethyl)trimethoxysilane (I), was synthesized by the reaction of nucleophilic substitution of the chlorine atom of trimethoxy(chloromethyl)silane by the pyridine-2-carboxylic group in a polar solvent (DMF) in the presence of catalytic amounts of dibenzo-18-crown-6.

Transetherification of (pyridine-2-carboxymethyl)-trimethoxysilane (I) with tris(2-hydroxyethyl)amine in

the absent of the catalyst at 48–50°C affords 1-(pyridine-2-carboxymethyl)silatrane (II) in 80% yield.

I + N(CH₂CH₂OH)₃
$$\longrightarrow$$
 O \longrightarrow Si(OCH₂CH₂)₃N

The composition and structure of the synthesized compounds **I** and **II** are proved by the ¹H, ¹³C, ²⁹Si NMR, IR spectroscopy, and elemental analysis.

(Pyridine-2-carboxymethyl)trimethoxysilane (I). To 5 g of potassium pyridine-2-carboxylate in 50 ml of DMF 5.63 g of trimethoxy(chloromethyl)silane was

added dropwise in the presence of dibenzo-18-crown-6. The reaction mixture was stirred with a magnetic stirrer at 70–75°C for 9 h, the formed precipitate was filtered off, the filtrate was distilled in a vacuum. The yield of (pyridine-2-carboxymethyl)trimethoxysilane 2.11 g (28%), bp 136°C (2 mm Hg). IR spectrum, v, cm⁻¹: 839, 1090, 2847 (Si–O–C), 1679 (C=O). ¹H NMR spectrum (CDCl₃), δ, ppm: 3.41 s (9H, OCH₃), 3.94 s (2H, OCH₂Si), 7.86 d (1H, H³, ³J 7.7 Hz), 7.60 t. d (1H, H⁴, ³J 7.7, ⁴J 1.6 Hz), 7.24 d.d.d (1H, H⁵, ³J 7.7, ${}^{3}J$ 4.9, ${}^{4}J$ 1.0 Hz), 8.52 d (1H, H⁶, ${}^{3}J_{HH}$ 4.9 Hz). ${}^{13}C$ NMR spectrum (CDCl₃), δ_C, ppm: 50.82 (OCH₃), 52.19 (OCH₂Si), 147.90 (C²), 124.90 (C³), 136.79 (C⁴),126.65 (C⁵), 165.35 [C(O)O]. Found, %: C 49.53; H 6.37; N 5.80; Si 11.91. C₁₀H₁₅N₁O₅Si₁. Calculated, %: C 49.79; H 6.22; N 5.81; Si 11.62.

1-(Pyridine-2-carboxymethyl)silatrane (II). To 1.41 g of (pyridine-2-carboxymethyl)trimethoxysilane 0.88 g of tris(2-hydroxyethyl)amine was added dropwise. The reaction mixture was stirred at 60–65°C for 1 h, the precipitate formed was filtered off and crystallized from the mixture hexane–chloroform (1:1). Yield 1.46 g (80%), mp 178–180°C. IR spectrum, v, cm⁻¹: 570, 785, 915, 940, 1085, 1105 [Si(OCH₂CH₂)₃N]. ¹H NMR spectrum (CDCl₃), δ, ppm: 2.81 t (6H,

NCH₂), 3.74 t (6H, OCH₂), 8.02 d (1H, H³, ${}^{3}J_{HH}$ 7.7 Hz), 7.69 t (1H, H⁴, ${}^{3}J$ 7.7 Hz), 7.31 d.d (1H, H⁵, ${}^{3}J$ 7.7, ${}^{3}J$ 4.9 Hz), 8.61 d (1H, H⁶, ${}^{3}J_{HH}$ 4.9 Hz), 3.83 s (2H, OCH₂Si). ${}^{13}C$ NMR spectrum (CDCl₃), δ_{C} , ppm: 57.20 (SiOCH₂), 59.08 (OCH₂Si), 51.17 (NCH₂), 149.36 (C²), 125.10 (C³), 136.68 (C⁴), 126.09 (C⁵), 149.44 (C⁶), 166.21 [C(=O)O]. ${}^{29}Si$ NMR spectrum (CDCl₃): δ_{Si} -78.7 ppm. Found, %: C 50.01; H 6.20; N 8.75; Si 9.36. $C_{13}H_{18}N_2O_5Si_1$. Calculated, %: C 50.32; H 5.81; N 9.03; Si 9.03.

REFERENCES

- The Chemistry of Organic Silicon Compounds, Rappoport, Z. and Apeloig, Y., Eds., New York: John Wiley & Sons Ltd, 1998, vol. 2, p. 1447.
- 2. Voronkov, M.G., Trofimova, O.M., and Chernov, N.F., *Uspekhi organicheskogo kataliza i khimii geterotsiklov* (Advances of Organic Catalyst and Chemistry of Heterocycles), Moscow: Khimiya, 2006.
- 3. Voronkov, M.G., Trofimova, O.M., Bolgova, Yu.I., and Chernov, N.F., *Russ. Chem. Rev.*, 2007, vol. 76, no. 9, p. 825.
- 4. Voronkov, M.G., Trofimova, O.M., Bolgova, Yu.I., and Chernov, N.F., *Chem. Heterocycl. Comp.*, 2001, vol. 37, no. 11, p. 1358.